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Abstract Wireless Data Broadcasting is a newly developed data dissemination method for
spreading public information to a tremendous number of mobile subscribers. Access Latency
and Tuning Time are two main criteria to evaluate the performance of such system. With
the help of indexing technology, clients can reduce tuning time significantly by searching
indices first and turning to doze mode during waiting period. Different indexing schemes
perform differently, so we can hardly compare the efficiency of different indexing schemes.
In this paper, we redesigned several most popular indexing schemes for data broadcasting
systems, i.e., distributed index, exponential index, hash table, and Huffman tree index. We
created a unified communication model and constructed a novel evaluation strategy by using
the probability theory to formulate the performance of each scheme theoretically and then
conducted simulations to compare their performance by numerical experiments. This is the
first work to provide scalable communication environment and accurate evaluation strate-
gies. Our communication model can easily be modified to meet specific requirements. Our
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comparison model can be used by the service providers to evaluate other indexing schemes
to choose the best one for their systems.

Keywords Data broadcasting · Indexing scheme · Access latency · Tuning time

1 Introduction

Wireless Data Broadcasting becomes more and more popular in recent years because of
its scalability and flexibility to disseminate public information to a mass number of mobile
subscribers with common interests, since it can satisfy all pending requests of the same data
in one single response. In a typical data broadcasting system, during some time periods, a
group of data items (named as a program) are broadcasted periodically as RF radio signals
by a base station within a certain area. Clients located in the valid region can access broad-
casting channel, search for the required data item, wait until the data item appears, and then
download it.

In practice, a number of real-world applications utilize data broadcasting techniques,
where mobile clients have common interest on a certain group of data. For instance, location-
based information such as local attractions, news, traffic, and weather can be broadcasted
to visitors who travel to some place for the first time. In addition, wireless broadcasting
service and devices by Ambient (www.ambientdevices.com), for example the 7-day weather
forecaster, sports devices, as well as the Weather and Information Center Refrigerator by LG
Electronics, demonstrate the industry’s interest in wireless data broadcasting.

Since majority mobile devices have limited battery power and constraint lifetime, access
latency and tuning time are two main criteria to evaluate the performance of a data broad-
casting system. Considering a process from the moment when a client initiates a query to the
moment it finishes downloading the data item, access latency denotes the whole time interval
of this process, while tuning time denotes the sum of time when a client keeps “active” dur-
ing the process. According to the architectural enhancements, each mobile device has two
modes: active mode and doze mode. It can operate in active mode and stay idle in doze mode.
Usually, the energy consumed in active mode is approximately 20–30 times higher than that
in doze mode. Therefore, access latency evaluates the query response time of a system and
tuning time evaluates the energy efficiency.

Indexing technologies have been introduced to reduce tuning time for a data broadcasting
system. An index is a specific data structure containing the location information of data items.
Due to the nature of data broadcasting, indices in data broadcasting system store the “time
offset” of target data items. Once a client gets this time offset, it is aware of when the target
data item will be broadcasted on the channel. Then, it can turn off to doze mode to save
energy and tune in again right before the data item appears. Different indexing technologies
have different searching efficiencies. Moreover, if we insert indices into data items, then the
whole size of a program will increase, resulting in longer access latency. Therefore, when
discussing about an indexing scheme, researchers will always consider the balance between
tuning time and access latency.

A lot of traditional disk-based indexing techniques have been modified to fit the require-
ment of data broadcasting systems, e.g., distributed index [10], Huffman tree [11], spatial
index [12], hash table [29], exponential index [27], signature tree [31], but they are con-
structed under different environments, which brings difficulties to compare their performance.
Moreover, the same indexing technique may perform quite differently under distinguished
situations. Therefore, it is desirable to construct a unified evaluation strategy to analyze the
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efficiency of different indices, which will become a guide to choosing the best indexing
scheme for a certain system.

Currently, according to our research, there is only one literature discussing about detailed
in-depth comparisons among three indices [28], but they choose the basic indexing tech-
niques with simple design instead of the existing state-of-the-art schemes. For instance, there
are several literatures about hashing-based index for data broadcasting [9,23,29,34]. Select-
ing the latest optimized hashing scheme would contribute to a fair and more competitive
comparison. Moreover, indices are compared under a fixed environment, which might not
be easily extended to other circumstances [28]. If considering a different communication
model, their discussion may have little significance. Yang and Bouguettaya [28] also made
strict constraints on data items that every datum has equal size, where a flexible size model
would be more practical for real-world applications.

Indexing technologies are developing very fast during recent years, and it is fair and
square to choose the state-of-the-art design for comparison. To overcome the aforementioned
shortcomings, we are aiming at comparing the performance of various index techniques
under all possible situations. To summarize, the communication environment varies from
three aspects: broadcast environment, data types, and broadcast scheduling.

– Broadcast environment: For a data broadcasting system, broadcast environment can be
classified into two categories: single-channel broadcasting and multi-channel broadcast-
ing. In single-channel broadcasting, data items in a program will be broadcasted through
only one channel, resulting in an interleaving structure of data and index packets [9,35].
In multi-channel broadcasting, a program will be broadcasted parallel through multiple
RF channels. Due to physical constraints, the available channel number is usually no more
than 64 [17]. Index and data scheduling techniques are quite different in multi-channel
environment.

– Data type: In a broadcast program, a group of data items are combined together for
dissemination. Each data item can be recognized by its primary key value. Data type
consists of two aspects to describe a datum: the size of a datum and the popularity of a
datum. For convenience, the earliest researches assume that data items have the same size
and the same access probability [21]. Later, people realize that such assumption is not
practical for real-world applications. Thus, in the latest index designs, this assumption is
relaxed, which allows data items having different sizes and different access probabilities,
to describe the real-world information more accurately.

– Broadcast scheduling: Broadcast scheduling denotes the methods of how to allocate data
items onto broadcasting channel, such that clients can download data more efficiently
on average. There are two different broadcast scheduling methods: flat broadcast and
skew broadcast. A flat broadcast means in one broadcasting cycle, each datum will be
broadcasted only once and then the whole program will be repeated. In a flat broadcast,
data items will repeat equal times. On the contrary, a skew broadcast means in one
broadcast cycle, the most popular data items will be repeated more than once, such that
clients can have more chances to download them faster. Broadcast scheduling methods
also vary a lot in single-channel broadcast and multi-channel broadcast.

We strive to study the performance of all commonly used indices in all possible situations.
Due to space limitation, such work will be split into a series of papers as future work. In this
paper, we mainly evaluate index performance in the most basic communication environment:
single-channel broadcast. We assume that data items can have different sizes and access prob-
abilities, such that our mathematical model can be more practical and accurate. Since system
performance in skew broadcast heavily relies on broadcast scheduling algorithms/designs,
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but we are aiming at the performance of indices, so we only discuss flat broadcast as the first
stage. In our future work, all existing situations will be discussed and analyzed accordingly.

In this paper, we mainly choose four types of indexing techniques for further redesign,
evaluation and comparison, i.e., distributed index, exponential index, hash table, and Huffman
tree index, which are among the most commonly used indices for existing data broadcasting
systems. To fairly evaluate different indices, we follow the latest and most efficient indexing
designs. We also redesign and modify some indices to ensure that they are applicable in our
communication model. The same group of data items will be used to test the efficiency of the
schemes. All of these work is trying to make sure that every design is discussed under a unified
environment. Otherwise, the comparison will become meaningless. Next, we construct an
accurate formulation to evaluate the performance of each indexing scheme, with the help
of probability theory. Such idea can be easily extended to other index technique besides the
four we mentioned in this paper. We provide more detailed theoretical analysis, with which
we hope to help service providers to choose among various indexing schemes. Finally, we
simulate the broadcasting environment and provide extended numerical experiments. The
results of our simulations prove the system performance fairly and clearly.

The rest of this paper is organized as follows: in Sect. 2, we study recent literatures for
wireless data broadcasting problem, including various indexing technologies in different
communication environments. In Sect. 3, we illustrate our system model, discuss broadcast
environment, data type, and bucket structures in detail. In Sects. 4, 5, 6, and 7, we describe the
construction and evaluation of distributed index, exponential index, hash table, and Huffman
tree index, respectively. Next, in Sect. 8, we illuminate the process of simulation and discuss
index performance based on our numerical experiments. Section 9 further explores the advan-
tages and disadvantages of various indexing schemes. Finally, Sect. 10 gives conclusion and
the plan of our next stage work.

2 Related works

In wireless data broadcasting, main research topics always focus on how to design index
structures and how to allocate data onto channels. The purpose is to reduce access latency
[25] and tuning time, in order to improve the system performance and efficiencies [8,32].

2.1 Traditional schemes

A lot of research works deal with data scheduling problem so as to decrease access latency.
Acharya et al. [1] proposed “broadcast disk,” which allocates data with similar access fre-
quencies onto different disks and broadcast data of these disks repeatedly according to their
frequencies, in order to cope with non-uniform access distribution. Vaidya and Hameed [22]
discussed optimization issue with respect to the average access latency when data access dis-
tribution is non-uniform. Vlajic et al. [24] presented an optimized data broadcasting strategy
in hierarchical cellular organization system. However, none of them implements indexing
technique. Moreover, without doze mode, the tuning time is as long as access latency, which
causes high power consumption of mobile devices.

2.2 Indexing schemes

There are also many works converting traditional disk-based indexing approaches to air
indexing by converting physical address into time offset. Figure 1 illustrates the classification
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Fig. 1 Classification of some existing indexing schemes

of some of the major existing indexing schemes, with specific parameters indicating their
characteristics and features [18]. In general, indexing schemes can be classified into three
categories, i.e., hashing, tree, and table-based schemes.

2.2.1 Hashing schemes

Hashing-based schemes utilize hash functions and store index information within data buck-
ets. Imielinski et al. [9] presented two hashing protocols, i.e., Hashing A and Hashing B. The
former protocol calculates h(K ) and then follows the Shift value to find data, the latter one
applied a minor modification of the hashing function to improve performance. Later, Yao
et al. [29] proposed MHash, which considers a two-argument hash function H(k, l) to map
each data to a number of slots, thus facilitates skewed access probabilities and reduces access
latency. Recently, Zhong et al. [34] further extended MHash and developed a multi-channel
energy-efficient hashing scheme called MEHash. Later, they refined the scheme and proposed
HAMHash [33]. By applying several hash functions to allocate data onto multiple channels,
facilitating skewed broadcast according to non-uniform data access frequencies and allow-
ing flexible number of data replications by introducing adjustable parameters, HAMHash
achieves almost optimal tuning time and energy efficiency.
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Fig. 2 An example of alphabetic
Huffman tree
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2.2.2 Tree-based schemes

Imielinski et al. proposed (1, m) index [10], which broadcasts the index part m times in
front of each fraction of the data file. They also customized distributed index [10], which
divides the index tree such as B+-tree into replicated part and non-replicated part. B+-
tree distributed index (BTD) was extended by many other researchers to satisfy different
system requirements. One work [26] proposed an index allocation method named TMBT
for multi-channel data broadcasting, which creates a virtual BTD for each data channel and
multiplexes them on the index channel. Hsu et al. [5] modified BTD to deal with non-uniform
data access frequencies. Gao et al. [4] built a complete multi-channel broadcasting system
based on the variation of BTD for data set with non-uniform access probabilities and unequal
data sizes. In addition, one paper [13] discussed a signature-based approach for information
filtering, where the binary hashing code of each datum (as signature) forms a tree to assist
searching, which may not perform well under non-uniform access probabilities. Later, Hu et
al. [6] designed a hybrid indexing scheme combining BTD and signature-based index. One
problem of signature scheme is that false drops may occur, where clients download the wrong
data records with identical signatures.

Huffman tree is a skewed index tree which takes into account the data access probabilities,
where more popular data have a shorter path from the root of the tree, thus the average tuning
time is minimized [3,20]. The construction of Huffman tree [20] is similar to Huffman code
construction, but it has a problem that the clients may fail to find desired data by traversing
that Huffman tree. The other algorithm for constructing skewed Huffman tree [3] has the
same problem. There is another kind of Huffman tree, Alphabetic Huffman Tree [7], which
serves as a binary search tree as illustrated in Fig. 2. Additional examples of Huffman tree
and alphabetic Huffman tree can be found in Figs. 12 and 13 of Sect. 7. It is further extended
to k-ary search tree [20], so that a tree node will fit in any size wireless packet by adjusting
the fan-out of the tree. However, most of the above works discussed their own proposed
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Huffman tree on a specific type of data set with special constraints and features under multi-
channel environment. Later, Zhong et al. [35] proposed an alphabetic Huffman tree distributed
indexing scheme, which minimizes both average access latency and average tuning time, and
outperforms the B+-tree distributed indexing scheme. In addition, Lu et al. [14] designed a
scalable and efficient tree-based mechanical scheme for multi-channel broadcast, which is
named SETMES.

2.2.3 Table-based schemes

Imielinski et al. [9] presented the flexible index, which divides data file into a flexible number
of segments according to one adjustable parameter, and stores indices in the tables within data
segments. Another work by Xu et al. [27] gave an idea of exponential index that shares links
in different search tables, which allows clients to start searching at an arbitrary index node.
However, both approaches may not perform well under non-uniform access probabilities.

2.3 Multi-channel environment

Besides the fact that a large number of indexing schemes are developed under single-channel
broadcast environment, multi-channel data broadcasting is also an important field in the
literatures, which can be categorized into two types according to the allocation methods:
interleaved and non-interleaved broadcasting. The former type means index and data can be
interleaved (appear alternately) on each available channel, while the latter means index and
data should be assigned to different channels, i.e., either an index channel or a data channel.

When it comes to multi-channel data broadcasting, how to allocate index and data will
impose significant impact on the performance of each indexing technique. Multi-channel
broadcasting might be similar to single-channel broadcasting in the way that a single-channel
system could be considered as part of an interleaved multi-channel broadcasting system,
where the index part can serve as local index on its channel, and additional global index might
be applied to connect existing channels in the system. Several works [2,30,33] deal with data
allocation for multi-channel data broadcasting. However, a certain allocation method can be
helpful to a specific index structure, meanwhile reducing the efficiency of another scheme.

2.4 Our contribution

In this paper, we aim at comparing several commonly used indexing approaches under the
same conditions, as well as improving them to minimize both average access latency and
average tuning time. As a result, we adopt single-channel data broadcast environment to avoid
all kinds of influences introduced by a multiplicity of multi-channel allocation methods. We
are the first work to compare several popular indexing schemes on a unified data broadcasting
system.

Our contribution includes three aspects. First, we construct a unified communication envi-
ronment for wireless data broadcasting system and provide structured design of four indexing
techniques: distributed index, exponential index, hash table, and Huffman tree index. We fol-
low the inspiration of latest and most efficient construction for each indexing scheme and
redesign or modify them such that they can be applied in the unified communication envi-
ronment with higher efficiency. Specifically, we redesign the pointers and bucket structures
for B+-tree index and consider different bucket sizes between index and data buckets. For
hash scheme, we redesign the allocation method and provide more details of the bucket
structure for extensive data set. Exponential index is redesigned to handle variable lengths
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of data, with rearranged control tables and redefined chunk structure. Huffman tree index
is adapted to single-channel broadcast with distributed method implemented. Second, we
provide general theoretical analysis to evaluate the performance of each index. Such analysis
can be applied easily to major indices used in data broadcasting. It can become a reference
to evaluate the efficiency of an indexing technique. Finally, we simulate data broadcasting
system with plenty of numerical experiments, using the same group of sample data, such that
the output will be comparable and reliable. Our results can guide service providers to choose
an appropriate indexing scheme for their own system.

3 System model and bucket structure

In this section, we present our novel unified system model and the detailed design of bucket
structures for the indexing strategies in wireless data broadcasting.

3.1 System symbols

In our system, the data set to be broadcasted is D, where the number of data items is t
and D = {d1, d2, . . . , dt }. We assume that data items in D are arranged in a consecutively
increasing order on their primary key values. The access frequency or probability for each
data item di is pi , where

∑t
i=1 pi = 1 and P indicates the probability set of D. Furthermore,

data items may have different sizes due to various applications, so we introduce bucket to
measure the size of each data item. A bucket is the minimum logical unit used for data
transmission in wireless data broadcasting system. We assume si is the number of buckets
that di occupies, which can be considered as the “length” or “size” of di on the axis of time,
and S denotes the length set of D. The base station broadcasts data set D on the wireless
broadcasting channel. The clients within the broadcasting region can generate queries on
client side and then tune into broadcasting channel to search and download the target data,
by following the indices (pointers) to find the target bucket, without implementing complex
retrieval methods. More detailed client-side retrieval algorithms can be found in [15,19,34].

In order to reduce tuning time, some tree-based indexing strategies, for instance the B+-
tree Index, are applied to the wireless data broadcasting system. We use T to denote the index
tree for tree-based indexing strategies and define k as the maximum number of branches for
each node in T . L is the depth or height of T . When it comes to the distributed index [10],
T will be “cut” at the lth level. A bcast means one broadcast sequence on a channel. Table 1
lists most of the symbols used in this paper. Some other symbols and detailed design for
different indexing strategies will be illustrated later.

3.2 Bucket and pointer

Data bucket and index bucket have different structures and sizes. Generally, a bucket has two
segments, named head segment and payload segment. The head segment has the following
elements:

bId: The id of bucket, used for recognition, is in the format of (i, j, n), which implies
the nth recurrence of index B j

i , or data d j
i with size of n buckets.

bType: The type of this bucket. For example, BTD indexing strategy has three types of
buckets, i.e., control index, search index, and data bucket.
bLength: The total length of this bucket, measured in terms of time unit.
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Table 1 Symbol description

Symbols Description Symbols Description

D Data set D = {d1, . . . , dt } L Level of T

P Probability set P = {p1, . . . , pt } l Threshold to cut T

S Length set S = {s1, . . . , st } k Maximum branch number for T

t Number of data items bcast One broadcast sequence on a channel

T An index tree Bi The ith block on bcast

B j
i The jth index at ith level of T d j

i The jth bucket of data item di

�i The ith subtree of level l+1 on T max(B j
i ) Maximum key value that B j

i domains

R Total number of �i on T path(B j
i ) A path from B1

1 to B j
i

Vi Distributed path for �i vi Length of Vi on Bi with average v

Di Data block on Bi ui Length of index on Bi with average u

Pi Probability for block Bi xi Length of Di on Bi with average x

| · | Cardinality of one set ‖ · ‖ Length measured in data bucket unit

C Chunk set Z Index table size in Exponential index

I Number of data items in C τ(l) Avg. number of visited index buckets

b First index of hole-free sequence H(k) Hash function

θ Zipf distribution parameter Dis(k) Displacement area

1
1B

2
2B1

2B

Head    Pointer_B2
11

2B    Pointer_B2
12

2B

bId bType bLength pKey pOffsetbOffset

Bucket_ 1
1BIndex_ 1

1B

Fig. 3 An example of index bucket structure

bOffset: The offset to the next nearest index. For instance, in BTD, it may be the offset
to the next control index.

Now, it comes to the payload segment. If the bucket is a data bucket, then the payload
segment stores the datum. Note that a datum may take up several data buckets, while each data
bucket has the same maximum length. On the other hand, if the bucket is an index bucket, then
the payload segment stores index information, such as pointers, which indicate the locations
of its children on time axis. In our paper, a pointer contains the following elements:

pKey: The bId of the index or data bucket it points to, used by clients to find searching
direction.
pOffset: An offset from current moment, which allows clients to sleep for “offset” time
and tune in again at the moment when target bucket appears.

For tree-based indexing strategies, an index bucket may contain several pointers, corre-
sponding to the design of index tree. Figure 3 illustrates an index bucket storing an index
node B1

1 of a binary index tree, which has a head segment (the block in shadow) to “label”
index B1

1 itself, and a payload segment (two white blocks) to store the pointers of B1
1 . Since

B1
1 has two children B1

2 and B2
2 , its payload segment has two pointers, recording the locations

of B1
2 and B2

2 .
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Fig. 4 An example of B+-tree cut at the 2nd level
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Control
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Search
Index

Broadcast
Sequence 1D 2D 3D 4D

1DData 
Block 2D 3D 4D 161514139 10 11 125 6 7 81 2 3 4

1[2]
2B 1[2]

1B 2[2]
2B

Fig. 5 An example of bcast with control Tables

4 B+-tree-based distributed index

In the first place, we present the B+-tree distributed indexing strategy in detail, which is
developed based on the observation that a data set would suit real-world applications much
better if considering non-uniform data access patterns and unequal data sizes. We take the
advantages of both distributed index and B+-tree index [4], with further modifications on
the broadcasting strategy and the structures of pointers and buckets, in order to make it more
practical, efficient, and realistic, under our unified model for better evaluations.

Here, index and data are interleaved on the same broadcasting channel. According to
B+-tree-based distributed index, we consider depth-first index layouts and “cut” index tree
at level l. Thus, nodes from level 1 to level l are in the replicated part, while other index
nodes are in the non-replicated part. Furthermore, we append control indices on those indices
within the replicated part, to make the searching process more efficient. An example of a full
binary B+-tree index structure is presented in Fig. 4, which shows a distributed index tree
with the maximum branch number k = 2, total number of levels L = 4, and cutting level
l = 2. Each index node B j

i represents the j th index node on the i th level of the tree. All the
index nodes above (including) the cutting level of the tree are called control indices, while
the other index nodes below are called search indices.

Next, we traverse T according to distributed rules and then append control table for
each control index. Figure 5 shows an example of the broadcast sequence bcast for the
aforementioned index tree example in Fig. 4, where number of data items t = 16, max-
imum branch number k = 2, cutting level l = 2, and total number of levels L = 4.
There are 18 indices in bcast, 6 of which are control indices and the rest 12 are search
indices. �i denotes the i th subtree in the non-replicated part, which only consists of
search indices. For instance, �2 is the subtree rooted at B2

3 , with two children B3
4 , B4

4 .
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Fig. 6 An example of a client searching for data

Besides, path(B j
i ) is a path from root B1

1 to node B j
i (excluding the end point), and

Vi is a distributed path before each �i . For example, from Fig. 4, we can see that the
distributed path for B3

3 should be V3 = {B1
1 , B2

2 }. The broadcast sequence is defined
as bcast = {V1, dft(�1), D1, V2, dft(�2), D2, . . . , VR, dft(�R), DR}. Furthermore, an
index bucket may have different size compared to a data bucket, so we define “r” to indicate
the ratio of data bucket size to index bucket size, i.e.,

1

r
= index bucket size

data bucket size

We use |bcast| to represent the cardinality of set bcast and ‖bcast‖ to indicate the total
length of bcast, measured in the unit of data bucket. Moreover, we use dft(�i ) to represent
the depth-first traversal for �i and use B j[1]

i , . . . , B j[k]
i to represent k occurrences of B j

i ,
where k is identical to the branch number k of T . Next, control tables are appended onto
control index, following the approaches step by step as introduced in [4]. Finally, all the
control tables are successfully built as shown in Fig. 5.

4.1 Performance analysis of B+-tree-based distributed index

In this section, we evaluate the system performance of B+-tree-based distributed index by
means of analyzing access latency and tuning time.

First, let us consider access latency, where all index and data buckets are interleaved on
one broadcast channel. The whole bcast is divided into B1, . . . , BR blocks, where Bi =
{Vi , dft(�i ), Di }, for 1 ≤ i ≤ R. We use Pi to represent the access probability of block
Bi , where Pi can be derived by summing up the probabilities of all data buckets that belong
to data block Di of Bi , i.e., Pi = ∑

j∈Di
p j , f or i = 1, . . . , R. Let v denote the average

length of Vi , u indicates the average length of Vi + �i , and x symbolizes the average length

of Di . Therefore, we have u = |bcast|−|D|
r R , v =

∑R
i=1 |Vi |
r R , and x = |D|/R.

Theorem 4.1 If distributed indices and data are interleaved on one broadcast channel, then
the average access latency for B+-tree-based distributed index is:

E(AL) = 1

R
·

R∑

i=1

(
R−2∑

w=1

((
1

2
+ w

)

u + wx

)

· P(i+w)%R + (u − v

2
+ x

2
) · v

u + x
· Pi

+
((

1

2
+ w

)

u + wx

)

· Pi · u − v + x

u + x

)

. (1)

Proof First, a client tunes into the broadcast channel at block Bi . Then, it waits for another
w blocks to reach the index which contains the pointer to the required datum d j at Bi+w .
Second, the client waits for the first data bucket of d j to come and begins to download, until
it gets all the data buckets of d j . Illustration of the whole process is shown in Fig. 6. Hence,
according to the law of total expectation, we have the above conclusion. Next, we will present
detailed analysis of each step.
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– Case 1: 1 ≤ w < R − 1. We can divide this case into three phases: 1) the client tunes
into block Bi and takes an average u+x

2 time in it; 2) it waits through (w − 1) complete
blocks, which takes (w − 1)(u + x) time; and 3) it finds the pointer to the datum, which
only exists in �i+w , and then downloads the data, so the average waiting time is u + x

2 .
The mean of this period is:

E(AL|b= i, d =w)= u+x

2
+(w−1) · (u+x)+u+ x

2
=

(
1

2
+w

)

u+wx (2)

– Case 2: w = 0. The client tunes into Vi of block Bi , and the pointer to required data is
indeed in the following �i of the same block Bi . In this case, it only has aforementioned
phases 1) and 3), so its mean becomes:

E(AL|b = i, d = 0) = v

2
+ u − v + x

2
= u − v

2
+ x

2
(3)

– Case 3: w = R − 1. Suppose the client tunes into block Bi and the required data are just
in this block Bi . Unfortunately, the client already missed the control index of this block
when it tunes in, so it has to wait for the next control index in the next block to continue
searching, and then wait for Bi to be broadcasted again in the next bcast. The mean of
the waiting time is:

E(AL|b = i, d = R − 1) =
(

1

2
+ w

)

u + wx (4)

Therefore, considering Eqs. (2), (3), (4), and the law of total expectation, we can derive
the average access latency as follows:

E(AL) =
R∑

i=1

R−1∑

w=0

E(AL|b = i, d = w) · P(b = i, d = w)

=
R∑

i=1

(
R−2∑

w=1

E(AL|b = i, d = w)P(b = i, d = w) + E(AL|b = i, d = 0)

·P(b = i, d = 0) + E(AL|b = i, d = R − 1)P(b = i, d = R − 1)

)

=
R∑

i=1

(
R−2∑

w=1

((
1

2
+ w

)

u + wx

)
P(i+w)%R

R
+

(
u − v

2
+ x

2

) Pi

R

v

u + x

+
((

1

2
+ w

)

u + wx

)
Pi

R
· u − v + x

u + x

)

= 1

R

R∑

i=1

(
R−2∑

w=1

((
1

2
+ w

)

u + wx

)

P(i+w)%R +
(

u − v

2
+ x

2

) vPi

u + x

+
((

1

2
+ w

)

u + wx

)

Pi · u − v + x

u + x

)

��

Next, we evaluate the computation of average tuning time for B+-tree-based distributed
index.
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Theorem 4.2 The average tuning time for B+-tree-based distributed index is

E(T T ) =
R∑

i=1

3ui − vi + (2 + r)xi

r (u R + |D|) + 2L − l

2r
+

|D|∑

i=1

si pi (5)

Proof The tuning time of searching and downloading one data item comprises the following
phases:

Phase 1 The client tunes into broadcast channel and searches for the right control index, fol-
lowing which it can get the required data on that block. We analyze this phase by considering
three cases.

– Case 1: The client first tunes into a control index. Then, the client can follow the control
table to find the right control index in one more step, which is discussed in [4]. The
probability of this case is

∑R
i=1

vi
u R+|D| , and the average tuning time of this case is

2
r

∑R
i=1

vi
u R+|D| .

– Case 2: The first visited bucket is a search index. The client may need to wait for the next
nearest control index and follow its control table to reach the target control index. This
has a probability of

∑R
i=1

ui −vi
u R+|D| , and average tuning time is 3

r

∑R
i=1

ui −vi
u R+|D| .

– Case 3: The first visited bucket is a data bucket. The client also needs to wait for the
next nearest control index and then goes to the target control index, with a probability of∑R

i=1
xi

u R+|D| . The average tuning time is (1 + 2
r )

∑R
i=1

xi
u R+|D| .

Phase 2 Next, the client searches for the pointer that directly points to the required data. The
average number of visited index buckets in this step is 1

r

( l
2 + (L − l)

) = 1
r (L − l

2 ).

Phase 3 The client sleeps until the requested data arrive and then tunes in again to download
data. The average downloading time is

∑|D|
i=1 si pi .

Finally, by summarizing the above steps, we obtain the average tuning time:

E(T T ) = 2
∑R

i=1 vi

r(u R + |D|) + 3
∑R

i=1(ui − vi )

r(u R + |D|) + (2 + r)
∑R

i=1 xi

r(u R + |D|) + 2L − l

2r
+

|D|∑

i=1

si pi

=
R∑

i=1

3ui − vi + (2 + r)xi

r (u R + |D|) + 2L − l

2r
+

|D|∑

i=1

si pi

��
After analyzing average access latency and average tuning time, now we need to know

the value of L , R, |bcast|, |�i |, u and v. The total level L of an index tree is determined by
the number of branches k of T and S of data set D. Since the total number of pointers at the
bottom level of T should be equal to the number of data items, then the number of leaf nodes
on T should be at least �t/k	, and the number of nodes at the second lowest level of T should
be at least ��t/k	/k	. In this way, we can calculate the size of each level inductively, until
we reach the root of T . N (L) is defined as the set of nodes at the Lth level of T . Algorithm 1
shows how to compute L and |N (L)|, with which we can get R = |N (l + 1)|.

5 Exponential index

In the second place, we propose our exponential index strategy, based on the idea of gen-
eralized exponential index introduced in [27], with extended details of the bucket structure
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Algorithm 1 Compute L
Input: t , k
Output: L , |N (i)| (1 ≤ i ≤ L).

1: L = 1; ns = �t/k	;
2: while ns 
= 1 do
3: |N (L)| = ns; L = L + 1; ns = �ns/k	;
4: end while
5: |N (L)| = ns; reverse N (i), (1 ≤ i ≤ L);

Data 1

…...d2 d4 d6 d15 d16d5d3d1

 Chunk 1  Chunk 2  Chunk 3  Chunk 8

Data 2 Data 4 Data 6 Data 16Data 3 Data 5 Data 15

A bcast1

pKey pOffset

d4 1-1 chunk
d8 2-3 chunk

 d16 4-7 chunk

d2 1 bucket
pKey pOffset

d8 1-1 chunk
 d12 2-3 chunk
d4 4-7 chunk

d6 1 bucket}

}
Local Index

Global Index

Index Table

Data Item

Fig. 7 An example of exponential indexing strategy

design, and refinement to suit our unified model in order to achieve higher efficiency and
better evaluations.

Some differences between our exponential indexing strategy and that in [27] are summa-
rized as follows: 1) Data items have unequal lengths, i.e., each datum may take up several
data buckets, which is a more realistic assumption under real-world scenarios. 2) For each
chunk, we use an independent index bucket to store the index table. 3) We allocate the index
bucket at the beginning of a chunk, before all the data buckets of that chunk. 4) We change
the number of entries in local index to be I . 5) In an index table, the local index entries
appear before the global index entries. 6) The structures of index bucket and data bucket are
redesigned and illustrated with more details. One of the main features of exponential index
is that it is error resilient, so that it can be easily applied to the broadcasting environment
with link errors.

Exponential index is very efficient in that it shares links in different search trees and thus
minimizes storage overhead. Also, it has a linear and distributed structure, which allows
searching to begin from any index as well as recovering from link errors quickly. Here is
an example in Fig. 7, the server maintains 16 data items that are arranged in a bcast in
ascending order of their key values. We assume that data items have different sizes, so each
of them may take up several data buckets. We assume each chunk contains an index table,
and a data part containing I data items, here I = 2 in this example. The index table here
consists of four entries (rows), including one entry of local index and three entries of global
index. Each entry indexes a segment of buckets in the form of a tuple as {pKey, pOffset},
where pKey is the maximum key value of this range of buckets, and pOffset specifies the
distance to the beginning of this range from the current position (denoted as buckets or
chunks). The sizes of the segments in one table grow exponentially. For global indices, the
first entry describes a single bucket segment (i.e., the next bucket), and for each i > 1, the
i th entry describes the segment of buckets that are 2i−1 to 2i − 1 away (i.e., 2i−1 chunks
away).

5.1 Performance analysis of exponential index

In this section, we evaluate the system performance of exponential index by means of ana-
lyzing access latency and tuning time.
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First, let us consider access latency, where all index buckets and data buckets are inter-
leaved on one broadcast channel. We use C to denote the chunk set, and Z to indi-
cate the size of one index table. The whole bcast is divided into C1, . . . , C|C | blocks,

where |Ci | = ∑min(i I,t)
j=(i−1)I+1 s j + Z , for 1 ≤ i ≤ |C |, and the number of chunks

|C | = �t/I	. We use Pi to represent the access probabilities for chunk Ci , while Pi can
be derived by summing up the probabilities of all data buckets that belong to chunk Ci ,
i.e., Pi = ∑min(i ·I,t)

k=(i−1)·I+1 p j , f or i = 1, . . . , |C |. Also, we denote the probability of tun-
ing in the i th chunk as P ′

i , which is equal to |Ci |/|bcast |. Furthermore, since the size of
index bucket might be different from that of each data bucket, so we also use the aforemen-
tioned parameter “r” to indicate the ratio of data bucket size to index bucket size. Recall that
1/r = index bucket si ze/data bucket si ze.

Theorem 5.1 If exponential indices and data items are interleaved on one broadcast channel,
then the average access latency for exponential index is

E(AL)=
|C |∑

i=1

⎛

⎝
|C |∑

j=i+1

⎛

⎝ |Ci |
2

+
j−1∑

k=i+1

|Ck |+ |C j |
2

⎞

⎠ · Pj +
(

Z

2
+ |Ci |−Z

|Ci | · |bcast |
)

· Pj

+
i−1∑

j=1

⎛

⎝|bcast |−
i∑

k= j

|Ck |+ |Ci |
2

+
∣
∣C j

∣
∣

2

⎞

⎠ · Pj

⎞

⎠ × |Ci |
|bcast | (6)

Proof First, a client tunes into the broadcast channel at chunk Ci . Then, it waits for the far-
thest chunk it can reach which precedes the target chunk containing the required datum.
Second, the client may hop several times to repeat this process until it gets the target
chunk C j . Eventually, the client waits for the first data bucket of the required data and
then downloads all the data buckets of these data. Hence, according to the law of total
expectation, we have the above conclusion. Next, we will present detailed analysis of each
step.

– Case 1: i � j − 1. We can divide this case into three phases: 1) the client tunes into
chunk Ci , which takes an average |Ci |

2 time in it; 2) the client waits through k complete

blocks, which takes
∑ j−1

k=i+1 |Ck | time; and 3) it finds the required data in chunk C j

and then downloads it, so the average waiting time is
|C j |

2 . Here, the access probabilities

Pj for chunk C j is
∑ j×I

k=( j−1)I+1 Pk . The mean of the access latency during this period
is:

E(AL1) =
⎛

⎝ |Ci |
2

+
j−1∑

k=i+1

|Ck | + |C j |
2

⎞

⎠ · Pj (7)

– Case 2: i = j . Suppose the client tunes into broadcast channel at chunk Ci and luckily
gets the index table. Fortunately, the request datum is in the same chunk Ci , so after
checking the local index, client can find the request data and download it in the same
chunk. Considering the probability, the mean of the access latency during this period is:

E(AL2) =
(

Z

|Ci | × |Ci |
2

+ |Ci | − Z

|Ci | ×
(

|bcast | − |Ci | + |Ci |
2

+ |Ci |
2

))

· Pj

=
(

Z

2
+ |Ci | − Z

|Ci | × |bcast |
)

· Pj (8)
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– Case 3: i > j . In this case, the target chunk C j locates in front of chunk Ci where the
client tunes in, so the client needs to wait until the next occurrence of chunk C j in the
next bcast. Just like the above cases, we can derive the mean of the period in this case as:

E(AL3) =
⎛

⎝|bcast | −
i∑

k= j

|Ck | + |Ci |
2

+
∣
∣C j

∣
∣

2

⎞

⎠ · Pj (9)

Therefore, considering Eqs. (7), (8), (9), and the law of total expectation, we can conclude
the average access latency as follows:

E(AL) =
|C |∑

i=1

⎛

⎝
|C |∑

j=i+1

E(AL1) + E(AL2) +
i−1∑

j=1

E(AL3)

⎞

⎠ × P ′
i

=
|C |∑

i=1

⎛

⎝
|C |∑

j=i+1

(
|Ci |

2
+

j−1∑

k=i+1

|Ck | + |C j |
2

) · Pj +
(

Z

2
+ |Ci | − Z

|Ci | · |bcast |
)

· Pj

+
i−1∑

j=1

⎛

⎝|bcast | −
i∑

k= j

|Ck | + |Ci |
2

+
∣
∣C j

∣
∣

2

⎞

⎠ · Pj

⎞

⎠ × |Ci |
|bcast | (10)

��
Next, we examine the average tuning time for exponential index.

Theorem 5.2 The average tuning time for exponential index is

E(T T ) =
t∑

i=1

|C |−1∑

l=0

[(

1 + 1

r

)
�si

|bcast | + 1

r
· Z · |C |
|bcast | + τ(l) + si

]

· pi (11)

Proof The tuning time of searching and downloading one data item comprises the following
phases:

Phase 1 The client tunes into broadcast channel and searches for the first index table, which
is known as initial probe.

– Case 1: The client tunes into an index bucket. Then, the average tuning time of its initial
probe is 1

r .
– Case 2: The first visited bucket is a data bucket. The client may need to wait for the next

nearest index bucket, so the average tuning time is 1 + 1
r .

Phase 2 After that, the client searches for the target index bucket that directly points to the
required data in the same chunk. Suppose it is l chunks away. We define the average number
of visited index buckets in this step as τ(l).

τ(l) =
{

0 if l = 0

τ(l − x) + 1 if l > 0
(12)

Here, x is the maximum value less than or equal to l in the set of {1, 2, �a +
2, . . . , � ang −1

a−1  + 1}, where a is the base value for exponential index, and ng is the number
of global index entries in each index table.
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Phase 3 The client sleeps until the required data appear and then tunes in again to download
data, thus an additional tuning time of si is required.

Finally, summarizing the above steps, we can get the average tuning time

E(T T ) =
t∑

i=1

|C |−1∑

l=0

[(

1 + 1

r

)
�si

|bcast | + 1

r
· Z · |C |
|bcast | + τ(l) + si

]

· pi (13)

��

6 Hash scheme

In the third place, we present the novel hash scheme-based broadcasting strategy. Hash-
ing is a well-known data access approach for traditional database systems. Nowadays, it is
also implemented in wireless data broadcasting environment. In this paper, we introduce an
energy-efficient hash scheme, which stores hash parameters in head segment of data buckets,
functioning as index without introducing additional index buckets. We take advantages of the
indexing scheme called MHash introduced in [29], and the hash functions applied in [23], as
well as the idea of Hashing B protocol in [9], and then improve them by adapting the scheme
to more extensive data items with different sizes, and further extend them with more details
of the broadcast structure design, in order to achieve unified conditions for better evaluations.

In our proposed hash scheme, a broadcast cycle consists of a sequence of data buckets,
each of which contains head segment and data segment. There is no index bucket in a
broadcast cycle, while the hash parameters are stored in the head segment of each bucket.
In addition, the head segment contains the bucket ID denoted as bId, data item key denoted
as bKey, Hash Functions, and Global Pointer. Buckets in the broadcast cycle are numbered
as 1, 2, . . . , ‖D‖. Data items may have different lengths, thus they may take up different
number of buckets. Therefore, the cycle length or total number of buckets in one bcast is
‖D‖ = ∑|D|

i=1 si . Figure 8 shows the specific bucket structure in our hash scheme.

6.1 Hash scheme for simple data set

First of all, let us see how to allocate simple data set onto broadcast channel, where data
items have the same size of one data bucket. First, we use a hash function H(key) as below,
to map all the data items onto corresponding buckets:

H(key) = [(A ∗ key + B) mod 231] % |bcast | + 1, (14)

Bucket  3 Bucket 4 …... Bucket ||D||Bucket 1

Bucket ID 

Global Pointer

Hash Functions

Data Item Key

Head Data

Bucket 2

Fig. 8 The structure of buckets in hash scheme indexing strategy
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Global Pointer
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Data Item Key

Hashed Bucket

Chain

Hashed Item 7
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13 14

Fig. 9 The chaining method of hash scheme for simple data set

where A = 1103515245, B = 12345, |bcast | means the total number of buckets or length
of broadcast cycle, and key is the key value of that data item [23,29]. After that, we apply
chaining method to resolve collisions. If multiple items are hashed to the same bucket,
we link them into a chain by decreasing order of their access probabilities: the first item
with the highest access probability would be stored in this hashed bucket, while others are
sequentially placed in the following empty buckets. We break the tie between items having
the same probability by selecting the item with smaller key first.

We assign Global Pointer on each bucket, which records an offset or a control table of
(key, offset) pairs that refer to the chaining bucket(s) storing the item(s) on the chain. For
example, in Fig. 9, data items 1 to 16 are in decreasing order of access probability, while data
2, 7, 10 are hashed to the same bucket 2. After allocating all the other data into their hashed
buckets, we place data 7 at the first empty bucket 5 and data 10 at the second empty bucket 6,
and then assign the global pointer on bucket 2 for them. Next, in order to create a hole-free
broadcast cycle, we apply the second hash function H ′(key):

H ′(key) = (H(key) + |bcast | − b) mod |bcast | + 1, (15)

where b is the smallest index such that buckets b to |bcast | are hole-free under H [29]. The
main purpose of second hash is to eliminate the empty buckets or holes that appear in the
first broadcast cycle.

6.2 Hash scheme for extended data set with different sizes

Next, let us see how to allocate extended data set which has different item sizes instead of
equal size onto broadcast channel. Given a set of data items and their sizes, we first apply hash
function H(key) according to (14), where |bcast | is set to be the total number of data buckets
denoted as ‖D‖. And then, we apply the second hash function H ′(key) according to (15),
and here the value of b can be figured out through analyzing the values of H(key) obtained
in the first step. After that, we sort the data items by their H ′(key) values in ascending order.
To break the tie, we choose the data item with higher probability and larger size first. If two
data items have the same probability and size, we choose the one with smaller key value first.

After we figure out such an order, we can allocate data items in this order one by one onto
broadcast channel from the first bucket, while all the buckets of one data item are consecutively
placed one after another on the channel. The last step is to double-check and/or assign global
pointers. Figure 10 demonstrates an example of the whole process of extended hash scheme
data allocation method with 16 data items in the data set. Note that the initial allocation in
(c) is not necessary in the real process but just an illustration, because we can find out the
last hole directly from the H(k) values in table (a), and through that we can figure out the
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Fig. 10 An example of data allocation method for extended hash scheme

value of b. Table (b) is derived after the initial allocation, and figure (d) is the final allocation
according to table (b). We conclude the construction of hash scheme-based indexing strategy
in Algorithm 2. Taking into account the complexity of assigning global pointers for each data
bucket, the worst-case time complexity of Algorithm 2 would be O(|D| × ‖D‖).

Algorithm 2 Construct Extended Hash Scheme and Data Allocation
Input: D, S, P
Output: bcast.

1: for i := 1 to |D| do
2: H(i) = [(A × i + B) mod 231]%‖D‖ + 1;
3: end for
4: Find the last hole h0;
5: b = h0 + 1;
6: for i := 0 to |D| do
7: H ′(i) = (H(i) + ‖D‖ − b) mod ‖D‖ + 1;
8: end for
9: Sort data set in ascending order of H ′(i) to D′;
10: Allocate D′ with all its data buckets consequently onto broadcast channel;
11: Assign global pointers for each data bucket;
12: Print(bcast);

6.3 Performance analysis of extended hash scheme

In this section, we analyze the system performance of hash scheme by using the metrics of
access latency and tuning time.

First, let us consider access latency. We use s to denote the bucket size, Pi to represent the
access probability of bucket i , while Pi = pk/sk , if bucket i is taken up by datum k with size
sk . Here, we introduce Dis(k) to indicate the displacement area, which means the difference
between the physical bucket where datum k resides (denoted as Phy(k)) and the designated
bucket or hashed bucket for k (denoted as h′(k)), thus Dis(k) = Phy(k) − h′(k). Similar to
the method in [9], we can calculate the expected access latency for hash scheme by means
of calculating each datum k’s access time and then average it out, while the expected access
time for each datum k is the combination of the following two cases:
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– Case 1: The initial probe is between the hashed bucket and the physical bucket of the
data. Then, the client missed the hashed bucket as well as the global pointer, despite that
the physical bucket is still ahead in the current broadcast. Hence, the client has to wait
till another bcast to get the global pointer in its hashed bucket. This case is calculated as

E1(AL) = (Dis(k)/|bcast |) × (|bcast | + 1/2 × Dis(k)) (16)

– Case 2: The initial probe locates outside the displacement area. In this case, the client
has to wait on average between the displacement area and the bcast. Thus, we have

E2(AL) = (1 − Dis(k)/|bcast |) × ((|bcast | − Dis(k))/2 + Dis(k))

= (1 − Dis(k)/|bcast |) × (|bcast | + Dis(k))/2 (17)

The expected access latency is calculated as the sum of each datum’s expected access time
divided by the total number of data items while considering their item size and probabilities.

Next, let us look at the average tuning time for extended hash scheme. It can be calculated
by the basic average tuning time plus the average downloading time

∑|D|
i=1 si pi . The maximum

value of basic tuning time is 3, which is calculated as the first step for initial probe, the second
step for the hashed bucket, and the last (optional) step following the global pointer to the
physical bucket. Also for a given data set, we can calculate each datum’s tuning time and
then average them out based on their access probabilities to get the more accurate result.

7 Huffman tree-based distributed index

In the fourth place, it comes to the Huffman tree-based distributed indexing strategy. Huffman
tree index has been applied to the wireless broadcasting environment ever since last decades,
which is efficient because of its consideration of the access probabilities of data items. The
popular data with higher probability reside in higher level of Huffman tree, which reduces
search time when traversing from the root node. Considering flat broadcast, we found that the
distributed method can be extended to Huffman tree-based broadcast, which is an innovative
idea and has not been considered or published before.

Now, it comes to the construction of Huffman tree-based distributed index. The structure
of index bucket and data bucket is almost the same as our B+-tree-based index. First, we
construct the k-ary alphabetic Huffman tree by following the methods introduced in [20],
based on our sample data set and corresponding access frequencies in Fig. 11.

Take binary alphabetic Huffman tree as an example. In the first stage, we construct a
Huffman tree by choosing data nodes i, j as candidates to be merged when all of the following
conditions are satisfied: 1) there are no leaves between them, 2) the sum of their frequencies
is the minimum over all pairs, and 3) i and j are the leftmost nodes among all pairs.

If the above conditions hold, we create a new index node with frequency equal to the sum
of i’s and j’s frequencies, and replace i and j with this new index node in the node set or
construction sequence. This stage produces a tree T0 without alphabetic ordering of the data
nodes, as shown in Fig. 12.

In the second stage, we record the level of each datum node (leaf node) in T0, denoted as
Li of data di , while the root node level equals 1. Next, from the lowest level to the root, we
rearrange pointers such that for each level, the leftmost two nodes have the same parent, and
then the next two and so on. Thus, we produce an alphabetic Huffman tree T in this way, as
shown in Fig. 13, without changing the cost of the tree. We can easily extend this algorithm
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Fig. 11 An example data set of Huffman tree-based distributed index
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Fig. 12 The first step of constructing Huffman tree
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Fig. 13 The final Huffman tree cut at the third level

to construct k-ary Huffman tree, by allowing at most k nodes to be merged in the first stage,
and combining up to k nodes with the same parent in the second stage.

Second, we cut this tree T at level l and perform a distributed traversal as in Sect. 4.
The index nodes above cutting level is still called control index, and index nodes below
cutting level is search index. We append control tables onto control index in the same way
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Fig. 14 The broadcast sequence of Huffman tree-based index

as Sect. 4. The final broadcast sequence is illustrated in Fig. 14, and the whole process
of constructing the Huffman tree-based distributed index and the broadcasting sequence is
presented in Algorithm 3, of which the computational complexity would be O(|D|2) in the
worst case.

Algorithm 3 Construct Huffman Tree-Based Distributed Index
Input: D, P , S
Output: T , bcast.

1: Arrange data set D in alphabetic order → construction sequence C S;
2: while C S.si ze > 1 do � Construct the First Tree T0;
3: if fi + f j = min( fx + fy) then
4: if no leaves between i, j then
5: if i, j are the leftmost nodes among all pairs then
6: Merge i , j into index node i ′ with fi ′ = fi + f j ;
7: Insert i ′ into C S before i ; C S = C S\{i, j};
8: end if
9: end if
10: end if
11: end while
12: Print( T0 );
13: Traverse T0 and mark each data di ’s level as Li ;
14: for i := max(Li ) to 1 do
15: Rearrange pointers to level i so that each pair of nodes from the left side have the same parent;
16: end for
17: Print(T );
18: Cut T at level l;
19: Perform a distributed traversal of T to produce the broadcast sequence;
20: Append control tables onto control index;
21: Print the final broadcast sequence bcast;

7.1 Performance analysis of Huffman tree distributed index

In this section, we analyze the system performance of Huffman tree-based distributed index
by metrics of evaluating access latency and tuning time.

123



Evaluation and comparison of various indexing schemes in single-channel broadcast 397

First, let us consider access latency, where all index buckets and data buckets are inter-
leaved on one broadcast channel. The whole bcast is divided into B1, . . . , BR blocks, where
Bi = {Vi , dft(�i )}, for 1 ≤ i ≤ R. We use Pi to represent the access probability for block
Bi , where Pi can be derived by summing up the probabilities of all data buckets that belong
to Bi , i.e., Pi = ∑

j∈Bi
p j , for i = 1, . . . , R. Let vi denote the length of Vi , and δi indicate

the length of �i . Since an index bucket may have different size compared to a data bucket,
then we continue to use “r” as the ratio of data bucket size to index bucket size.

Theorem 7.1 If distributed indices and data are interleaved on one broadcast channel, the
average access latency for Huffman tree-based distributed index is

E(AL)= 1

‖bcast‖
R∑

i=1

⎛

⎝
R−2∑

w=1

⎛

⎝vi +δi

2
+

i+w−1∑

j=i+1

(v j + δ j )+vi+w+ δi+w

2

⎞

⎠ P(i+w)%R(vi +δi )

+
(

vi +δi

2

)

Pivi +
R∑

i=1

(vi +δi )Piδi

⎞

⎠ . (18)

Proof First, a client tunes into the broadcast channel at block Bi . Then, it waits for w blocks
to reach the index which contains the pointer to the required datum d j at Bi+w . Second, the
client waits for the first data bucket of d j to be broadcasted and begins to download, until it
gets all the data buckets of d j . Hence, according to the law of total expectation, we have the
above conclusion.

– Case 1: 1 ≤ w < R − 1. We can divide this case into three phases: 1) the client tunes
into block Bi and takes an average vi +δi

2 time in it; 2) it waits through (w − 1) complete

blocks, which takes
∑i+w−1

j=i+1 (v j + δ j ) time; and 3) it finds the pointer to the datum in

�i+w and then downloads data, so the average waiting time is vi+w + δi+w

2 . The mean
of the above period is:

E(AL|b = i, d = w) = vi + δi

2
+

i+w−1∑

j=i+1

(v j + δ j ) + vi+w + δi+w

2
(19)

– Case 2: w = 0. The client tunes into Vi of block Bi , and the pointer to the
requested data is indeed in the following bucket of the same block Bi . In this case,
it only contains aforementioned phases 1) and 3) of the first case, so its mean
becomes:

E(AL|b = i, d = 0) = vi

2
+ δi

2
= vi + δi

2
(20)

– Case 3: w = R − 1. Suppose the client tunes into block Bi , and the required data are just
in this block Bi . Unfortunately, the client already missed the index buckets of this block,
so it has to wait for the next available index in the next block to continue searching, and
then wait for Bi to be broadcasted again in the next bcast. In this case, the mean of the
waiting time is:

E(AL|b = i, d = R − 1) = δi

2
+

i+w−1∑

j=i+1

(v j +δ j )+vi + δi

2
=

R∑

i=1

(vi + δi ) (21)

Therefore, considering Eqs. (19), (20), (21), and the law of total expectation, we can
conclude the average access latency as follows:
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E(AL) =
R∑

i=1

R−1∑
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E(AL|b = i, d = w) · P(b = i, d = w)

=
R∑
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⎛

⎝
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⎛

⎝vi + δi

2
+
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⎞
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+
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2

)
Pivi

‖bcast‖ +
R∑

i=1

(vi + δi )
Piδi
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⎞

⎠

��
Next, let us look at the average tuning time for Huffman tree distributed index.

Theorem 7.2 The average tuning time for Huffman tree-based distributed index is

E(T T ) = 2
∑R

i=1 vi + (2 + r)|D| + 3
∑R

i=1 δi

r‖bcast‖ +
(

l

2r
+ 1

r
(Li − l) + si

)

pi (22)

Proof The tuning time of searching and downloading one data item comprises the following
phases:

Phase 1 The client tunes into broadcast channel and searches for the right index, following
which it can get the required data on that same block. We analyze this phase by considering
three cases.

– Case 1: The client first tunes into a control index. Then, the client can follow the con-
trol table to find the right control index in one more step, which is discussed in [4].
The probability of this case is

∑R
i=1

vi‖bcast‖ , and the average tuning time of this case is
2
r

∑R
i=1

vi‖bcast‖ .
– Case 2: The first visited bucket is a data bucket. The client needs to wait for the next

nearest control index and then go to the target control index, with a probability of |D|
‖bcast‖ .

The average tuning time is (1 + 2
r )

|D|
‖bcast‖ .

– Case 3: The first visited bucket is a search index. The client also need to wait for the next
nearest control index and follow its control table to reach the target control index. This
has a probability of

∑R
i=1

δi‖bcast‖ , and average tuning time is 3
r

∑R
i=1

δi‖bcast‖ .

Phase 2 Next, the client searches for the pointer that directly points to the required data.
Then, it sleeps until the required data appears and then tunes in again to download data. The
average tuning time of this step is ( l

2r + 1
r (Li − l) + si )pi , where Li is the level of data di

in the Huffman tree.
Finally, by summarizing the above steps, we can obtain the average tuning time of Huffman

tree-based distributed index as follows:

E(T T ) = 2

r

R∑

i=1

vi

‖bcast‖ +
(

1+ 2

r

) |D|
‖bcast‖ + 3

r

R∑

i=1

δi

‖bcast‖ +
(

l

2r
+ Li − l

r
+ si

)

pi

= 2
∑R

i=1 vi + (2 + r)|D|+3
∑R

i=1 δi

r‖bcast‖ +
(

l

2r
+ Li − l

r
+ si

)

pi

��
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Table 2 Simulation parameters

System parameters Range

Database size (the number of broadcast data items) 1,000–10,000

Total number of simulations for each parameter settings 100,000

Size of a data item (the number of data buckets) 1–4

Size of a data bucket 1 KB

Data bucket size/index bucket size 1–50

8 Experiments and performance evaluation

In this section, we simulate the unified wireless data broadcasting system, analyze, and
compare the performance of each aforementioned indexing scheme, i.e., the B+-tree-based
distributed index (B+-tree), the exponential index (Exponential), the extended hash scheme
(HASH), and the Huffman tree-based distributed index (Huffman). Simulations of the per-
formance comparison were implemented using JAVA NetBeans IDE 6.7.1 and carried out
on a 64-bit Intel Xeon E5520 2.27 GHz Quad-Core Server with 6 GB memory. The various
parameters used in our simulations are tabulated in Table 2.

We simulate a base station that continuously broadcasts a database with 1,000 to 10,000
data items onto a broadcasting channel, while there are multiple clients within the broad-
casting region requesting different sets of data items. Data items have different sizes varying
from 1 to 4 data bucket(s). Each data bucket is set to be of size 1 KB, and the size of each
index bucket can be calculated to be 0.1 KB [35]; thus, we set the ratio of index bucket size
to data bucket size as 1/r = 0.1, while other existing works rarely discussed about this ratio.
They always assume that data items have equal size, and that index bucket has the same size
as data bucket, which is not accurate in practice. Therefore, in order to produce more accurate
results and get much closer to the reality scenario, we consider different data item sizes and
bucket size ratio r .

Our simulator works as follows: For each type of indexing method, our simulator first
generates the broadcast sequence and allocates them onto the broadcast channel. Next, it will
generate a series of requests according to the data access probabilities. For each generated
request, the simulator executes searching by following the certain type of indices implemented
in the system.

The access probability of data items satisfy the Zipf distribution [16], which is a model
for non-uniform (or skewed) data access pattern of mobile clients [11,26]. It produces more
skewed access patterns as the parameter θ becomes larger. When θ = 0, the access pattern
satisfies uniform distribution. The default value of θ is set to 1. In each group of experiments,
we generate 100,000 requests for each parametric settings, and thereafter we calculate the
average access latency (AAL) and average tuning time (ATT ) during data retrieval for each
type of indexing scheme, respectively, where AAL and ATT are measured in milliseconds.

8.1 Varying database size

In the first set of experiments, we vary the number of data items in the database from 1,000
to 10,000 and evaluate the performance of each indexing scheme.

Figures 15 and 16 demonstrate the comparisons among AALs and ATTs for the aforemen-
tioned indexing schemes as well as the plain broadcast without index. In Fig. 15, exponential
scheme has the longest AAL among indexing schemes, due to its exponential feature, whereas
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Fig. 15 AAL w.r.t. database size

Fig. 16 ATT w.r.t. database size

Huffman scheme has the shortest AAL, which is always less than half of that of exponential
scheme. Both hash and B+-tree schemes have average AAL, and the former is larger at first
but after the database size exceeds 3,000, it becomes smaller than the latter. From Fig. 16,
we can find that the ATT of HASH is extremely small, and that the ATT of exponential
scheme is also quite small, while the ATT of B+-tree is the largest among indexing schemes.
Note that the scale of the left y-axis for plain broadcast is 20 times as much as that on the
right-hand side for the other indexing schemes, which indicates that our indexing schemes
achieve significant improvements on energy efficiency.

Specifically, the AAL and ATT of B+-tree scheme reveal that the AAL of B+-tree increases
linearly as the database size increases, approximately 59.9 % of the total length of one broad-
cast cycle, while the trend of B+-tree’s ATT also grows linearly as the database size increases,
from the minimum value of around 64.781 to the maximum value of 638.764.

When we consider the AAL and ATT of exponential scheme, we find out that the AAL
of exponential scheme increases rapidly as the database size increases, nearly approaching
92.1 % of the total length of one broadcast cycle. On the other hand, the trend of its ATT
grows quite slowly as the database size increases, from the minimum value of around 5.341
to the maximum value of 6.952, and then almost keeps stable there. We can also see that the
ATT of exponential scheme is extremely small in our system.

The AAL and ATT of HASH scheme indicate that the AAL of HASH increases linearly
as the database size increases, which is approximately 68.4 % of the total length of one
broadcast cycle, whereas the ATT of HASH remains stable around 1.5, which is extremely
small compared to the database size as large as 10,000 in our system.
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Fig. 17 AAL w.r.t. bucket size
ratio r

If we look into the AAL and ATT of Huffman scheme, it can be found that the AAL
of Huffman increases gradually as the database size increases, approximately 41.9 % of the
total length of one broadcast cycle, whereas the ATT of Huffman increases linearly as the
database size increases, growing from the minimum value of around 43.158 to the maximum
value of 420.523.

From this set of experiments, we can conclude that hash scheme is a remarkable energy-
efficient indexing scheme with well-acceptable AAL for wireless data broadcasting, and
that Huffman scheme is a remarkable time-efficient indexing scheme which returns query
data much faster than the other schemes. Exponential scheme is a promising energy-efficient
indexing scheme; although its AAL is the longest, it is still acceptable. Last but not least,
B+-tree is a type of time-efficient indexing scheme with average AAL.

8.2 Varying bucket size ratio

As we mentioned before, the size of an index bucket is very small compared to that of a data
bucket and the size differences may have significant influence on the performance of various
indexing schemes. Thus, in this set of experiments, we evaluate the effect of size ratio r of a
data bucket size to an index bucket size by varying it from 1 to 50.

The results shown in Figs. 17 and 18 illustrate that the bucket size ratio r has great impact
on Huffman scheme and B+-tree scheme, but has little impact on hash and exponential
schemes. For Huffman scheme and B+-tree scheme, when the ratio r increases from 1 to 20,
both AAL and ATT of them decrease sharply at first and then tend to be stable. Specifically,
when the ratio r increases from 20 to 50, the values of both AAL and ATT remain stable. On
the other hand, for hash and exponential schemes, the values of both AAL and ATT remain
stable no matter how the ratio r changes. The reason is that hash scheme and exponential
scheme do not require index buckets in their broadcast cycle, but Huffman scheme and B+-
tree scheme need a number of index nodes to facilitate searching. When the bucket size
ratio r increases, the size differences increase, which means that the index bucket becomes
comparatively smaller and produces less impact on the broadcast cycle. Therefore, Huffman
scheme and B+-tree scheme perform better when the bucket sizes ratio r is larger.

8.3 Construction complexity and computing complexity

In this set of experiments, we try to evaluate the construction complexity and computing
complexity for different types of indexing schemes.
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Fig. 18 ATT w.r.t. bucket size
ratio r

Table 3 The ratio of searching time to construction time for different indexing schemes

HASH Huffman tree B+-tree Exponential

Construction time CT (ms) 3.0915 28.1141 0.6207 0.0106

Searching time ST (ms) 0.1326 0.0438 0.0637 1.0477

Ratio = ST/CT 0.0429 0.0016 0.1026 98.750

C = αST + βCT 0.1329 0.0466 0.0638 1.0476

From Table 3, we can see that Huffman tree scheme has the shortest average searching time
among the four schemes, followed by B+-tree and hash schemes, whereas the exponential
scheme has the longest searching time, which is almost 23 times longer than that of Huffman
scheme. On the other hand, the average construction time of Huffman scheme is the longest
among the four schemes. However, it is only 28.1141 milliseconds, which is extremely short
in practice. Since we only perform construction once but may query thousands of data items,
so the searching time plays a more crucial role in this set of experiments. Therefore, we set
up the cost function of searching time and construction time with parameters α = 0.9999
and β = 0.0001. The results confirm that Huffman tree scheme has the best performance
and the lowest computing complexity.

8.4 The length of broadcast cycle

In this set of experiments, we compare the length of one full bcast, (i.e., ‖bcast‖) among
hash, Huffman, B+-tree, and exponential schemes, as well as the plain broadcast without
indices, which indicates the overhead of each indexing schemes.

Figure 19 demonstrates that for the same set of data items, exponential scheme has
the longest bcast, followed by hash scheme, while B+-tree scheme and Huffman tree
scheme have the shortest bcast. As the total number of data items increases from 1,000
to 10,000, the length differences of ‖bcast‖ become more remarkable. The reason is that
the growth of the total number of index buckets in one bcast might expand the total
length of that bcast in either Huffman scheme or B+-tree scheme, while the total num-
ber of data items may increase the number of entries of each index table in exponential
scheme.
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Fig. 19 ‖bcast‖ w.r.t. database
size

Table 4 The comparison of different indexing schemes

Features HASH Huffman B+-tree Exponential

Energy efficiency Excellent Good Fair Excellent

Time efficiency Good Excellent Good Fair

Efficient for skewed data No Yes No No

Better with smaller index No Yes Yes No

Resilient to link errors Yes Sometimes Sometimes Yes

Ease of construction Fair Poor Good Excellent

Ease of searching Fair Excellent Good Acceptable

Has short Bcast Good Excellent Good Fair

Flexibility No Yes Yes Yes

Clustered or non-clustered Non-clustered Non-clustered Clustered Clustered

9 Comparison of different indexing schemes

Now, after a series of detailed comparisons, we present another group of more intuitive com-
parisons in the form of a table, for the following measurement criteria: energy efficiency and
time efficiency, effect of skewed access probability and index bucket size, performance under
link errors, construction complexity and searching complexity, length of bcast, flexibility to
tune between AAL and ATT, and clustered or non-clustered features. Note that exponential
scheme can be extended to non-clustered broadcasting, but that requires further improvement
and modification, which is beyond our consideration in this paper.

In Table 4, the performance of these schemes has been categorized into four grades, i.e.
excellent, good, fair, and poor, based on the simulation results. The measurement “Ease
of Searching” mainly evaluates the complexity of the searching algorithms in terms of the
average time to answer one query in each scheme. From Table 4, we obtain the following
conclusion in general.

B+-tree: It is easy to construct and performs well in searching, especially with smaller
index buckets. It has short access time, is flexible and sometimes resilient to link errors.
Service providers may consider our B+-tree scheme when the data set is often updated
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and most clients prefer shorter response time compared to low energy consumption,
especially where data sizes are different in the database.
Exponential: It is the easiest one to construct. It is resilient to link errors and is flexible,
also has short bcast and consumes less energy. Exponential scheme should be considered
in a system where the data set needs to be updated frequently and link errors occurs a lot,
whereas most clients prefer low energy consumption rather than fast response. Actually,
sometimes clients might expect a long waiting time to obtain the target data.
HASH: This scheme consumes less energy, has short bcast and short access time. It is
also resilient to link errors. Hash scheme is the best choice under the circumstance that
most clients require both short response time and minimum energy consumption, since
hash scheme can achieve almost optimal tuning time. It works better in those systems
that need not be updated frequently, because it may take some time constructing the
broadcasting sequences. Also, the hash functions may need further modifications for
different data sets.
Huffman tree: It performs better in searching, especially for the data set with more
skewed access probabilities and smaller index buckets. It is flexible, has short bcast
and best time efficiency, consumes less energy, and sometimes is resilient to link errors.
Service providers should consider Huffman tree scheme when most clients require the
minimum response time and low energy consumption, especially when the data items
have quite skewed access probabilities in the data set. However, it might not be a good
choice when the data set needs to be updated frequently.

9.1 Extended comparison

In the previous sections, we mainly focus on four of the most popular indexing schemes.
Actually, other indexing schemes can also be evaluated under our model. Among them, tree-
based indexing schemes (if they are balanced trees) should produce similar but hardly better
performance than B+-tree index, or just similar to Huffman tree scheme (if they are not
balanced trees). Among non-tree-based indices, function-based schemes that use a function
to map data key values to the locations on the channel should have a similar performance
to hash scheme, and table-based schemes might perform like exponential index. Non-flat
broadcasting works better for the case that the data set is skewed on the access frequency,
especially when some data items have extremely higher frequencies than others.

Generally speaking, multi-channel broadcasting should produce better performances than
single-channel broadcasting. For example, under the ideal scenario, the average access latency
in a dual-channel broadcasting system should be reduced by half of that in a single-channel
system, if using exactly the same type of indexing scheme and omitting the overhead of
channel pointers and synchronization mechanism. In a real scenario, although we may not
achieve the ideal performance of multi-channel broadcasting, we should still be able to get
a better performance than single-channel broadcasting. For instance, [33] recently proposed
a hash-based scheme called HAMHash, which is a kind of interleaved non-flat broadcasting
scheme with good performance. More in-depth comparison of HAMHash and other schemes
is beyond the scope of this paper, yet can be found in the work [33].

In Table 5, we present an additional group of intuitive comparisons among some other
indexing schemes, where the measurement criteria include: skewed access patterns, multi-
channel or single channel, skewed or flat broadcast, correct response or false results. Accord-
ing to the performance baseline established in Table 4 (from excellent to poor of the afore-
mentioned four schemes), and the strong interrelationships among flexible, (1, m), signature,
and HAMHash schemes, we provide further comparisons for this set of schemes.
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Table 5 Further comparison of additional indexing schemes

Features HAMHash Signature Flexible (1, m) Index

Energy efficiency Excellent Good Capable Fair

Time efficiency Good Good Capable Acceptable

Skewed access Yes No No No

Resilient to link errors Yes No No No

Multi-channel Yes No No No

Correct response Yes Sometimes Yes Yes

Skewed broadcast Yes No No No

Flexibility Yes No Yes Yes

Clustered or non-clustered Non-clustered Clustered Clustered Clustered

On the other hand, when it comes to the non-interleaved broadcasting, the broadcasting
scheme varies a lot. There can be a number of different allocation methods for each single
type of index on multiple channels. Also, it is not easy to achieve a truly fair comparison
among different types of index schemes under various allocation scenarios. We need much
more detailed discussions on that, which is beyond the scope of this paper. Due to space
limitation, such work will be split into a series of papers as future work.

To sum up, it is hard to say which indexing scheme performs better, since every scheme
has its own features, advantages, and disadvantages. Therefore, in this paper, we provide all
these comparisons in order to guide the service providers to choose from various indexing
schemes according to their specific needs and requirements for their systems.

10 Conclusion

In this paper, we construct a novel evaluation strategy with unified communication environ-
ment to evaluate and compare the performance of various indexing technologies. Among a
number of commonly used indexing schemes, we choose four of the most popular indices,
namely the distributed index, exponential index, hash scheme, and Huffman tree index,
redesign these schemes and try to improve their performance under our unified broadcasting
environment, in order to evaluate their features, performance, and efficiencies with the same
criteria.

First, we set up a unified communication environment as a base for comparison and
redesign the index structures such that they can work smoothly under the system model. Next,
we create a novel evaluation strategy, use probability theory to formulate the performance of
each scheme theoretically, and construct the simulation model to evaluate their performance
by numerical experiments.

To conclude, for a given data set, the most efficient method in energy aspect is the hash
scheme; the most efficient method in time aspect is the Huffman scheme. B+-tree scheme
is easy to construct and performs well too. Exponential scheme is also easy to construct and
resilient to link error.

In summary, we are the first work to provide a scalable communication model and accurate
evaluation strategies. Service providers can easily modify the communication environment or
introduce other indexing techniques to our system and use our comparison model to choose
the best indexing scheme to satisfy their specific requirements for their data broadcasting
systems.
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We strive to study the performance of all commonly used indices in all possible situations.
Due to space limitation, such work will be split into a series of papers as future work.
Since system performance in skewed broadcast heavily relies on data scheduling design and
algorithms, but here we are aiming at the performance of indices, so we only discuss flat
broadcast as the first stage. In our future work, all existing situations will be discussed and
analyzed accordingly.
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